X7ROOT File Manager
Current Path:
/usr/lib/python2.7/site-packages/blivet
usr
/
lib
/
python2.7
/
site-packages
/
blivet
/
📁
..
📄
__init__.py
(117.33 KB)
📄
__init__.pyc
(100.39 KB)
📄
__init__.pyo
(100.39 KB)
📄
arch.py
(9.45 KB)
📄
arch.pyc
(8.63 KB)
📄
arch.pyo
(8.63 KB)
📄
callbacks.py
(3.55 KB)
📄
callbacks.pyc
(1.85 KB)
📄
callbacks.pyo
(1.85 KB)
📄
deviceaction.py
(32.05 KB)
📄
deviceaction.pyc
(33.21 KB)
📄
deviceaction.pyo
(33.21 KB)
📄
devicefactory.py
(63.97 KB)
📄
devicefactory.pyc
(54.57 KB)
📄
devicefactory.pyo
(54.57 KB)
📁
devicelibs
📁
devices
📄
devicetree.py
(117.74 KB)
📄
devicetree.pyc
(82.74 KB)
📄
devicetree.pyo
(82.74 KB)
📄
errors.py
(5.25 KB)
📄
errors.pyc
(12.1 KB)
📄
errors.pyo
(12.1 KB)
📄
fcoe.py
(7.91 KB)
📄
fcoe.pyc
(7.27 KB)
📄
fcoe.pyo
(7.27 KB)
📄
flags.py
(3.89 KB)
📄
flags.pyc
(2.53 KB)
📄
flags.pyo
(2.53 KB)
📁
formats
📄
i18n.py
(1.21 KB)
📄
i18n.pyc
(756 B)
📄
i18n.pyo
(756 B)
📄
iscsi.py
(19.29 KB)
📄
iscsi.pyc
(16.36 KB)
📄
iscsi.pyo
(16.36 KB)
📄
nvdimm.py
(6.24 KB)
📄
nvdimm.pyc
(6.16 KB)
📄
nvdimm.pyo
(6.16 KB)
📄
partitioning.py
(95.65 KB)
📄
partitioning.pyc
(66.5 KB)
📄
partitioning.pyo
(66.5 KB)
📄
partspec.py
(4.05 KB)
📄
partspec.pyc
(3.34 KB)
📄
partspec.pyo
(3.34 KB)
📄
platform.py
(17.38 KB)
📄
platform.pyc
(18.52 KB)
📄
platform.pyo
(18.52 KB)
📄
size.py
(13.47 KB)
📄
size.pyc
(11.4 KB)
📄
size.pyo
(11.4 KB)
📄
storage_log.py
(2.56 KB)
📄
storage_log.pyc
(3.32 KB)
📄
storage_log.pyo
(3.32 KB)
📄
tsort.py
(3.37 KB)
📄
tsort.pyc
(2.38 KB)
📄
tsort.pyo
(2.38 KB)
📄
udev.py
(28.34 KB)
📄
udev.pyc
(30.19 KB)
📄
udev.pyo
(30.19 KB)
📄
util.py
(15.94 KB)
📄
util.pyc
(19.52 KB)
📄
util.pyo
(19.52 KB)
📄
zfcp.py
(16.01 KB)
📄
zfcp.pyc
(13 KB)
📄
zfcp.pyo
(13 KB)
Editing: partitioning.py
# partitioning.py # Disk partitioning functions. # # Copyright (C) 2009, 2010, 2011, 2012, 2013 Red Hat, Inc. # # This copyrighted material is made available to anyone wishing to use, # modify, copy, or redistribute it subject to the terms and conditions of # the GNU General Public License v.2, or (at your option) any later version. # This program is distributed in the hope that it will be useful, but WITHOUT # ANY WARRANTY expressed or implied, including the implied warranties of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General # Public License for more details. You should have received a copy of the # GNU General Public License along with this program; if not, write to the # Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA # 02110-1301, USA. Any Red Hat trademarks that are incorporated in the # source code or documentation are not subject to the GNU General Public # License and may only be used or replicated with the express permission of # Red Hat, Inc. # # Red Hat Author(s): Dave Lehman <dlehman@redhat.com> # from operator import gt, lt from decimal import Decimal import parted from pykickstart.constants import AUTOPART_TYPE_BTRFS, AUTOPART_TYPE_LVM, AUTOPART_TYPE_LVM_THINP, AUTOPART_TYPE_PLAIN from .errors import DeviceError, NoDisksError, NotEnoughFreeSpaceError, PartitioningError, AlignmentError from .flags import flags from .devices import PartitionDevice, LUKSDevice, devicePathToName from .devices.partition import FALLBACK_DEFAULT_PART_SIZE from .devices.lvm import ThPoolReserveSpec from .formats import getFormat from .size import Size from .i18n import _ import logging log = logging.getLogger("blivet") AUTOPART_THPOOL_RESERVE = ThPoolReserveSpec(20, Size("1 GiB"), Size("100 GiB")) def _getCandidateDisks(storage): """ Return a list of disks to be used for autopart/reqpart. Disks must be partitioned and have a single free region large enough for a default-sized (500MiB) partition. They must also be in :attr:`StorageDiscoveryConfig.clearPartDisks` if it is non-empty. :param storage: a Blivet instance :type storage: :class:`~.Blivet` :returns: a list of partitioned disks with at least 500MiB of free space :rtype: list of :class:`~.devices.StorageDevice` """ disks = [] for disk in storage.partitioned: if not disk.format.supported or disk.protected: continue if storage.config.clearPartDisks and \ (disk.name not in storage.config.clearPartDisks): continue part = disk.format.firstPartition while part: if not part.type & parted.PARTITION_FREESPACE: part = part.nextPartition() continue if Size(part.getLength(unit="B")) > PartitionDevice.defaultSize: disks.append(disk) break part = part.nextPartition() return disks def _scheduleImplicitPartitions(storage, disks, min_luks_entropy=0): """ Schedule creation of a lvm/btrfs member partitions for autopart. We create one such partition on each disk. They are not allocated until later (in :func:`doPartitioning`). :param storage: a :class:`~.Blivet` instance :type storage: :class:`~.Blivet` :param disks: list of partitioned disks with free space :type disks: list of :class:`~.devices.StorageDevice` :param min_luks_entropy: minimum entropy in bits required for luks format creation :type min_luks_entropy: int :returns: list of newly created (unallocated) partitions :rtype: list of :class:`~.devices.PartitionDevice` """ # create a separate pv or btrfs partition for each disk with free space devs = [] # only schedule the partitions if either lvm or btrfs autopart was chosen if storage.autoPartType == AUTOPART_TYPE_PLAIN: return devs for disk in disks: if storage.encryptedAutoPart: fmt_type = "luks" fmt_args = {"passphrase": storage.encryptionPassphrase, "cipher": storage.encryptionCipher, "escrow_cert": storage.autoPartEscrowCert, "add_backup_passphrase": storage.autoPartAddBackupPassphrase, "min_luks_entropy": min_luks_entropy} else: if storage.autoPartType in (AUTOPART_TYPE_LVM, AUTOPART_TYPE_LVM_THINP): fmt_type = "lvmpv" else: fmt_type = "btrfs" fmt_args = {} part = storage.newPartition(fmt_type=fmt_type, fmt_args=fmt_args, grow=True, parents=[disk]) storage.createDevice(part) devs.append(part) return devs def _schedulePartitions(storage, disks, implicit_devices, min_luks_entropy=0, requests=None): """ Schedule creation of autopart/reqpart partitions. This only schedules the requests for actual partitions. :param storage: a :class:`~.Blivet` instance :type storage: :class:`~.Blivet` :param disks: list of partitioned disks with free space :type disks: list of :class:`~.devices.StorageDevice` :param min_luks_entropy: minimum entropy in bits required for luks format creation :type min_luks_entropy: int :param requests: list of partitioning requests to operate on, or `~.storage.autoPartitionRequests` by default :type requests: list of :class:`~.partspec.PartSpec` instances :returns: None :rtype: None """ if not requests: requests = storage.autoPartitionRequests # basis for requests with requiredSpace is the sum of the sizes of the # two largest free regions all_free = (Size(reg.getLength(unit="B")) for reg in getFreeRegions(disks)) all_free = sorted(all_free, reverse=True) if not all_free: # this should never happen since we've already filtered the disks # to those with at least 500MiB free log.error("no free space on disks %s", [d.name for d in disks]) return free = all_free[0] if len(all_free) > 1: free += all_free[1] # The boot disk must be set at this point. See if any platform-specific # stage1 device we might allocate already exists on the boot disk. stage1_device = None for device in storage.devices: if storage.bootloader.stage1_disk not in device.disks: continue if storage.bootloader.is_valid_stage1_device(device, early=True): stage1_device = device break # # First pass is for partitions only. We'll do LVs later. # for request in requests: if ((request.lv and storage.doAutoPart and storage.autoPartType in (AUTOPART_TYPE_LVM, AUTOPART_TYPE_LVM_THINP)) or (request.btr and storage.autoPartType == AUTOPART_TYPE_BTRFS)): continue if request.requiredSpace and request.requiredSpace > free: continue elif request.fstype in ("prepboot", "efi", "macefi", "hfs+") and \ (storage.bootloader.skip_bootloader or stage1_device): # there should never be a need for more than one of these # partitions, so skip them. log.info("skipping unneeded stage1 %s request", request.fstype) log.debug("%s", request) if request.fstype in ["efi", "macefi"] and stage1_device: # Set the mountpoint for the existing EFI boot partition stage1_device.format.mountpoint = "/boot/efi" log.debug("%s", stage1_device) continue elif request.fstype == "biosboot": is_gpt = (stage1_device and getattr(stage1_device.format, "labelType", None) == "gpt") has_bios_boot = (stage1_device and any([p.format.type == "biosboot" for p in storage.partitions if p.disk == stage1_device])) if (storage.bootloader.skip_bootloader or not (stage1_device and stage1_device.isDisk and is_gpt and not has_bios_boot)): # there should never be a need for more than one of these # partitions, so skip them. log.info("skipping unneeded stage1 %s request", request.fstype) log.debug("%s", request) log.debug("%s", stage1_device) continue if request.size > all_free[0]: # not enough free space for the requested partition raise NotEnoughFreeSpaceError(_("Not enough free space on disks for " "automatic partitioning")) if request.encrypted and storage.encryptedAutoPart: fmt_type = "luks" fmt_args = {"passphrase": storage.encryptionPassphrase, "cipher": storage.encryptionCipher, "escrow_cert": storage.autoPartEscrowCert, "add_backup_passphrase": storage.autoPartAddBackupPassphrase, "min_luks_entropy": min_luks_entropy} else: fmt_type = request.fstype fmt_args = {} dev = storage.newPartition(fmt_type=fmt_type, fmt_args=fmt_args, size=request.size, grow=request.grow, maxsize=request.maxSize, mountpoint=request.mountpoint, parents=disks, weight=request.weight) # schedule the device for creation storage.createDevice(dev) if request.encrypted and storage.encryptedAutoPart: luks_fmt = getFormat(request.fstype, device=dev.path, mountpoint=request.mountpoint) luks_dev = LUKSDevice("luks-%s" % dev.name, fmt=luks_fmt, size=dev.size, parents=dev) storage.createDevice(luks_dev) if storage.doAutoPart and \ storage.autoPartType in (AUTOPART_TYPE_LVM, AUTOPART_TYPE_LVM_THINP, AUTOPART_TYPE_BTRFS): # doing LVM/BTRFS -- make sure the newly created partition fits in some # free space together with one of the implicitly requested partitions smallest_implicit = sorted(implicit_devices, key=lambda d: d.size)[0] if (request.size + smallest_implicit.size) > all_free[0]: # not enough space to allocate the smallest implicit partition # and the request, make the implicit partitions smaller in # attempt to make space for the request for implicit_req in implicit_devices: implicit_req.size = FALLBACK_DEFAULT_PART_SIZE return implicit_devices def _scheduleVolumes(storage, devs): """ Schedule creation of autopart lvm/btrfs volumes. Schedules encryption of member devices if requested, schedules creation of the container (:class:`~.devices.LVMVolumeGroupDevice` or :class:`~.devices.BTRFSVolumeDevice`) then schedules creation of the autopart volume requests. :param storage: a :class:`~.Blivet` instance :type storage: :class:`~.Blivet` :param devs: list of member partitions :type devs: list of :class:`~.devices.PartitionDevice` :returns: None :rtype: None If an appropriate bootloader stage1 device exists on the boot drive, any autopart request to create another one will be skipped/discarded. """ if not devs: return if storage.autoPartType in (AUTOPART_TYPE_LVM, AUTOPART_TYPE_LVM_THINP): new_container = storage.newVG new_volume = storage.newLV format_name = "lvmpv" else: new_container = storage.newBTRFS new_volume = storage.newBTRFS format_name = "btrfs" if storage.encryptedAutoPart: pvs = [] for dev in devs: pv = LUKSDevice("luks-%s" % dev.name, fmt=getFormat(format_name, device=dev.path), size=dev.size, parents=dev) pvs.append(pv) storage.createDevice(pv) else: pvs = devs # create a vg containing all of the autopart pvs container = new_container(parents=pvs) storage.createDevice(container) # # Convert storage.autoPartitionRequests into Device instances and # schedule them for creation. # # Second pass, for LVs only. pool = None for request in storage.autoPartitionRequests: btr = storage.autoPartType == AUTOPART_TYPE_BTRFS and request.btr lv = (storage.autoPartType in (AUTOPART_TYPE_LVM, AUTOPART_TYPE_LVM_THINP) and request.lv) thinlv = (storage.autoPartType == AUTOPART_TYPE_LVM_THINP and request.lv and request.thin) if thinlv and pool is None: # create a single thin pool in the vg pool = storage.newLV(parents=[container], thin_pool=True, grow=True) storage.createDevice(pool) # make sure VG reserves space for the pool to grow if needed container.thpool_reserve = AUTOPART_THPOOL_RESERVE if not btr and not lv and not thinlv: continue # required space isn't relevant on btrfs if (lv or thinlv) and \ request.requiredSpace and request.requiredSpace > container.size: continue if request.fstype is None: if btr: # btrfs volumes can only contain btrfs filesystems request.fstype = "btrfs" else: request.fstype = storage.defaultFSType kwargs = {"mountpoint": request.mountpoint, "fmt_type": request.fstype} if lv or thinlv: if thinlv: parents = [pool] else: parents = [container] kwargs.update({"parents": parents, "grow": request.grow, "maxsize": request.maxSize, "size": request.size, "thin_volume": thinlv}) else: kwargs.update({"parents": [container], "size": request.size, "subvol": True}) dev = new_volume(**kwargs) # schedule the device for creation storage.createDevice(dev) def doReqPartition(storage, requests): """Perform automatic partitioning of just required platform-specific partitions. This is incompatible with doAutoPartition. :param storage: a :class:`~.Blivet` instance :type storage: :class:`~.Blivet` :param requests: list of partitioning requests to operate on, or `~.storage.autoPartitionRequests` by default :type requests: list of :class:`~.partspec.PartSpec` instances """ if not any(d.format.supported for d in storage.partitioned): raise NoDisksError(_("No usable disks selected")) disks = _getCandidateDisks(storage) if disks == []: raise NotEnoughFreeSpaceError(_("Not enough free space on disks for " "automatic partitioning")) _schedulePartitions(storage, disks, [], requests=requests) def doAutoPartition(storage, data, min_luks_entropy=0): """ Perform automatic partitioning. :param storage: a :class:`~.Blivet` instance :type storage: :class:`~.Blivet` :param data: kickstart data :type data: :class:`pykickstart.BaseHandler` :param min_luks_entropy: minimum entropy in bits required for luks format creation :type min_luks_entropy: int :attr:`Blivet.doAutoPart` controls whether this method creates the automatic partitioning layout. :attr:`Blivet.autoPartType` controls which variant of autopart used. It uses one of the pykickstart AUTOPART_TYPE_* constants. The set of eligible disks is defined in :attr:`StorageDiscoveryConfig.clearPartDisks`. .. note:: Clearing of partitions is handled separately, in :meth:`~.Blivet.clearPartitions`. """ # pylint: disable=unused-argument log.debug("doAutoPart: %s", storage.doAutoPart) log.debug("encryptedAutoPart: %s", storage.encryptedAutoPart) log.debug("autoPartType: %s", storage.autoPartType) log.debug("clearPartType: %s", storage.config.clearPartType) log.debug("clearPartDisks: %s", storage.config.clearPartDisks) log.debug("autoPartitionRequests:\n%s", "".join([str(p) for p in storage.autoPartitionRequests])) log.debug("storage.disks: %s", [d.name for d in storage.disks]) log.debug("storage.partitioned: %s", [d.name for d in storage.partitioned if d.format.supported]) log.debug("all names: %s", [d.name for d in storage.devices]) log.debug("boot disk: %s", getattr(storage.bootDisk, "name", None)) disks = [] devs = [] if not storage.doAutoPart: return if not any(d.format.supported for d in storage.partitioned): raise NoDisksError(_("No usable disks selected")) disks = _getCandidateDisks(storage) devs = _scheduleImplicitPartitions(storage, disks, min_luks_entropy) log.debug("candidate disks: %s", disks) log.debug("devs: %s", devs) if disks == []: raise NotEnoughFreeSpaceError(_("Not enough free space on disks for " "automatic partitioning")) devs = _schedulePartitions(storage, disks, devs, min_luks_entropy=min_luks_entropy) # run the autopart function to allocate and grow partitions doPartitioning(storage) _scheduleVolumes(storage, devs) # grow LVs growLVM(storage) storage.setUpBootLoader() # only newly added swaps should appear in the fstab new_swaps = (dev for dev in storage.swaps if not dev.format.exists) storage.setFstabSwaps(new_swaps) def partitionCompare(part1, part2): """ More specifically defined partitions come first. < 1 => x < y 0 => x == y > 1 => x > y :param part1: the first partition :type part1: :class:`devices.PartitionDevice` :param part2: the other partition :type part2: :class:`devices.PartitionDevice` :return: see above :rtype: int """ ret = 0 # start sector overrides all other sorting factors part1_start = part1.req_start_sector part2_start = part2.req_start_sector if part1_start is not None and part2_start is None: return -1 elif part1_start is None and part2_start is not None: return 1 elif part1_start is not None and part2_start is not None: return cmp(part1_start, part2_start) if part1.req_base_weight: ret -= part1.req_base_weight if part2.req_base_weight: ret += part2.req_base_weight # more specific disk specs to the front of the list # req_disks being empty is equivalent to it being an infinitely long list if part1.req_disks and not part2.req_disks: ret -= 500 elif not part1.req_disks and part2.req_disks: ret += 500 else: ret += cmp(len(part1.req_disks), len(part2.req_disks)) * 500 # primary-only to the front of the list ret -= cmp(part1.req_primary, part2.req_primary) * 200 # fixed size requests to the front ret += cmp(part1.req_grow, part2.req_grow) * 100 # larger requests go to the front of the list ret -= cmp(part1.req_base_size, part2.req_base_size) * 50 # potentially larger growable requests go to the front if part1.req_grow and part2.req_grow: if not part1.req_max_size and part2.req_max_size: ret -= 25 elif part1.req_max_size and not part2.req_max_size: ret += 25 else: ret -= cmp(part1.req_max_size, part2.req_max_size) * 25 # give a little bump based on mountpoint if hasattr(part1.format, "mountpoint") and \ hasattr(part2.format, "mountpoint"): ret += cmp(part1.format.mountpoint, part2.format.mountpoint) * 10 if ret > 0: ret = 1 elif ret < 0: ret = -1 return ret def getNextPartitionType(disk, no_primary=None): """ Return the type of partition to create next on a disk. Return a parted partition type value representing the type of the next partition we will create on this disk. If there is only one free primary partition and we can create an extended partition, we do that. If there are free primary slots and an extended partition we will recommend creating a primary partition. This can be overridden with the keyword argument no_primary. :param disk: the disk from which a partition may be allocated :type disk: :class:`parted.Disk` :keyword no_primary: refuse to return :const:`parted.PARTITION_NORMAL` :returns: the chosen partition type :rtype: a parted PARTITION_* constant """ part_type = None extended = disk.getExtendedPartition() supports_extended = disk.supportsFeature(parted.DISK_TYPE_EXTENDED) primary_count = disk.primaryPartitionCount if primary_count < disk.maxPrimaryPartitionCount: if primary_count == disk.maxPrimaryPartitionCount - 1: # can we make an extended partition? now's our chance. if not extended and supports_extended: part_type = parted.PARTITION_EXTENDED elif not extended: # extended partitions not supported. primary or nothing. if not no_primary: part_type = parted.PARTITION_NORMAL else: # there is an extended and a free primary if not no_primary: part_type = parted.PARTITION_NORMAL else: # we have an extended, so use it. part_type = parted.PARTITION_LOGICAL else: # there are two or more primary slots left. use one unless we're # not supposed to make primaries. if not no_primary: part_type = parted.PARTITION_NORMAL elif extended: part_type = parted.PARTITION_LOGICAL elif extended: part_type = parted.PARTITION_LOGICAL return part_type def getBestFreeSpaceRegion(disk, part_type, req_size, start=None, boot=None, best_free=None, grow=None, alignment=None): """ Return the "best" free region on the specified disk. For non-boot partitions, we return the largest free region on the disk. For boot partitions, we return the first region that is large enough to hold the partition. Partition type (parted's PARTITION_NORMAL, PARTITION_LOGICAL) is taken into account when locating a suitable free region. For locating the best region from among several disks, the keyword argument best_free allows the specification of a current "best" free region with which to compare the best from this disk. The overall best region is returned. :param disk: the disk :type disk: :class:`parted.Disk` :param part_type: the type of partition we want to allocate :type part_type: one of parted's PARTITION_* constants :param req_size: the requested size of the partition in MiB :type req_size: :class:`~.size.Size` :keyword start: requested start sector for the partition :type start: int :keyword boot: whether this will be a bootable partition :type boot: bool :keyword best_free: current best free region for this partition :type best_free: :class:`parted.Geometry` :keyword grow: indicates whether this is a growable request :type grow: bool :keyword alignment: disk alignment requirements :type alignment: :class:`parted.Alignment` """ log.debug("getBestFreeSpaceRegion: disk=%s part_type=%d req_size=%d " "boot=%s best=%s grow=%s start=%s", disk.device.path, part_type, req_size, boot, best_free, grow, start) extended = disk.getExtendedPartition() alignment = alignment or parted.Alignment(offset=0, grainSize=1) for free_geom in disk.getFreeSpaceRegions(): # align the start sector of the free region since we will be aligning # the start sector of the partition if start is not None and \ not alignment.isAligned(free_geom, free_geom.start): log.debug("aligning start sector of region %d-%d", free_geom.start, free_geom.end) try: aligned_start = alignment.alignUp(free_geom, free_geom.start) except ArithmeticError: aligned_start = None else: # parted tends to align down when it cannot align up if aligned_start < free_geom.start: aligned_start = None if aligned_start is None: log.debug("failed to align start sector -- skipping region") continue free_geom = parted.Geometry(device=free_geom.device, start=aligned_start, end=free_geom.end) log.debug("checking %d-%d (%d)", free_geom.start, free_geom.end, free_geom.getSize()) if start is not None and not free_geom.containsSector(start): log.debug("free region does not contain requested start sector") continue if extended: in_extended = extended.geometry.contains(free_geom) if ((in_extended and part_type == parted.PARTITION_NORMAL) or (not in_extended and part_type == parted.PARTITION_LOGICAL)): log.debug("free region not suitable for request") continue if free_geom.start > disk.maxPartitionStartSector: log.debug("free range start sector beyond max for new partitions") continue if boot: max_boot = Size("2 TiB") free_start = Size(free_geom.start * disk.device.sectorSize) req_end = free_start + req_size if req_end > max_boot: log.debug("free range position would place boot req above %s", max_boot) continue log.debug("current free range is %d-%d (%d)", free_geom.start, free_geom.end, free_geom.getSize()) free_size = Size(free_geom.getLength(unit="B")) # For boot partitions, we want the first suitable region we find. # For growable or extended partitions, we want the largest possible # free region. # For all others, we want the smallest suitable free region. if grow or part_type == parted.PARTITION_EXTENDED: op = gt else: op = lt if req_size <= free_size: if not best_free or op(free_geom.length, best_free.length): best_free = free_geom if boot: # if this is a bootable partition we want to # use the first freespace region large enough # to satisfy the request break return best_free def sectorsToSize(sectors, sectorSize): """ Convert length in sectors to size. :param sectors: sector count :type sectors: int :param sectorSize: sector size :type sectorSize: :class:`~.size.Size` :returns: the size :rtype: :class:`~.size.Size` """ return Size(sectors * sectorSize) def sizeToSectors(size, sectorSize): """ Convert size to length in sectors. :param size: size :type size: :class:`~.size.Size` :param sectorSize: sector size in bytes :type sectorSize: :class:`~.size.Size` :returns: sector count :rtype: int """ sectors = int(size / sectorSize) return sectors def removeNewPartitions(disks, remove, all_partitions): """ Remove newly added partitions from disks. Remove all non-existent partitions from the disks in blivet's model. :param: disks: list of partitioned disks :type disks: list of :class:`~.devices.StorageDevice` :param remove: list of partitions to remove :type remove: list of :class:`~.devices.PartitionDevice` :param all_partitions: list of all partitions on the disks :type all_partitions: list of :class:`~.devices.PartitionDevice` :returns: None :rtype: NoneType """ log.debug("removing all non-preexisting partitions %s from disk(s) %s", ["%s(id %d)" % (p.name, p.id) for p in remove], [d.name for d in disks]) for part in remove: if part.partedPartition and part.disk in disks: if part.exists: # we're only removing partitions that don't physically exist continue if part.isExtended: # these get removed last continue part.disk.format.partedDisk.removePartition(part.partedPartition) part.partedPartition = None part.disk = None for disk in disks: # remove empty extended so it doesn't interfere extended = disk.format.extendedPartition if extended and not disk.format.logicalPartitions and \ (flags.installer_mode or extended not in (p.partedPartition for p in all_partitions)): log.debug("removing empty extended partition from %s", disk.name) disk.format.partedDisk.removePartition(extended) def addPartition(disklabel, free, part_type, size, start=None, end=None): """ Add a new partition to a disk. :param disklabel: the disklabel to add the partition to :type disklabel: :class:`~.formats.DiskLabel` :param free: the free region in which to place the new partition :type free: :class:`parted.Geometry` :param part_type: the partition type :type part_type: a parted.PARTITION_* constant :param size: size of the new partition :type size: :class:`~.size.Size` :keyword start: starting sector for the partition :type start: int :keyword end: ending sector for the partition :type end: int :raises: :class:`~.errors.PartitioningError` :returns: the newly added partitions :rtype: :class:`parted.Partition` .. note:: The new partition will be aligned using the kernel-provided optimal alignment unless a start sector is provided. """ # get alignment information based on disklabel, device, and partition size if start is None: if size is None: # implicit request for extended partition (will use full free area) _size = sectorsToSize(free.length, disklabel.sectorSize) else: _size = size alignment = disklabel.getAlignment(size=_size) end_alignment = disklabel.getEndAlignment(alignment=alignment) else: alignment = parted.Alignment(grainSize=1, offset=0) end_alignment = parted.Alignment(grainSize=1, offset=-1) log.debug("using alignment: %s", alignment) sectorSize = Size(disklabel.partedDevice.sectorSize) if start is not None: if end is None: end = start + sizeToSectors(size, sectorSize) - 1 else: start = free.start if not alignment.isAligned(free, start): start = alignment.alignNearest(free, start) if disklabel.labelType == "sun" and start == 0: start = alignment.alignUp(free, start) if part_type == parted.PARTITION_LOGICAL: # make room for logical partition's metadata start += alignment.grainSize if start != free.start: log.debug("adjusted start sector from %d to %d", free.start, start) if part_type == parted.PARTITION_EXTENDED and not size: end = free.end length = end - start + 1 else: length = sizeToSectors(size, sectorSize) end = start + length - 1 if not end_alignment.isAligned(free, end): end = end_alignment.alignUp(free, end) log.debug("adjusted length from %d to %d", length, end - start + 1) if start > end: raise PartitioningError(_("unable to allocate aligned partition")) new_geom = parted.Geometry(device=disklabel.partedDevice, start=start, end=end) max_length = disklabel.partedDisk.maxPartitionLength if max_length and new_geom.length > max_length: raise PartitioningError(_("requested size exceeds maximum allowed")) # create the partition and add it to the disk partition = parted.Partition(disk=disklabel.partedDisk, type=part_type, geometry=new_geom) constraint = parted.Constraint(exactGeom=new_geom) disklabel.partedDisk.addPartition(partition=partition, constraint=constraint) return partition def getFreeRegions(disks): """ Return a list of free regions on the specified disks. :param disks: list of disks :type disks: list of :class:`~.devices.Disk` :returns: list of free regions :rtype: list of :class:`parted.Geometry` Only free regions guaranteed to contain at least one aligned sector for both the start and end alignments in the :class:`~.formats.disklabel.DiskLabel` are returned. """ free = [] for disk in disks: for f in disk.format.partedDisk.getFreeSpaceRegions(): if f.length >= disk.format.alignment.grainSize: free.append(f) return free def updateExtendedPartitions(storage, disks): """ Reconcile extended partition changes with the DeviceTree. :param storage: the Blivet instance :type storage: :class:`~.Blivet` :param disks: list of disks :type disks: list of :class:`~.devices.StorageDevice` :returns: :const:`None` :rtype: NoneType """ # XXX hack -- if we created any extended partitions we need to add # them to the tree now for disk in disks: extended = disk.format.extendedPartition if not extended: # remove any obsolete extended partitions for part in storage.partitions: if part.disk == disk and part.isExtended: if part.exists: storage.destroyDevice(part) else: storage.devicetree._removeDevice(part, modparent=False) continue extendedName = devicePathToName(extended.getDeviceNodeName()) device = storage.devicetree.getDeviceByName(extendedName) if device: if not device.exists: # created by us, update partedPartition device.partedPartition = extended # remove any obsolete extended partitions for part in storage.partitions: if part.disk == disk and part.isExtended and \ part.partedPartition not in disk.format.partitions: if part.exists: storage.destroyDevice(part) else: storage.devicetree._removeDevice(part, modparent=False) if device: continue # This is a little odd because normally instantiating a partition # that does not exist means leaving self.parents empty and instead # populating self.req_disks. In this case, we need to skip past # that since this partition is already defined. device = PartitionDevice(extendedName, parents=disk) device.parents = [disk] device.partedPartition = extended # just add the device for now -- we'll handle actions at the last # moment to simplify things storage.devicetree._addDevice(device) def doPartitioning(storage): """ Allocate and grow partitions. When this function returns without error, all PartitionDevice instances must have their parents set to the disk they are allocated on, and their partedPartition attribute set to the appropriate parted.Partition instance from their containing disk. All req_xxxx attributes must be unchanged. :param storage: Blivet instance :type storage: :class:`~.Blivet` :raises: :class:`~.errors.PartitioningError` :returns: :const:`None` """ disks = [d for d in storage.partitioned if d.format.supported and not d.protected] for disk in disks: try: disk.setup() except DeviceError as e: log.error("failed to set up disk %s: %s", disk.name, e) raise PartitioningError(_("disk %s inaccessible") % disk.name) # Remove any extended partition that does not have an action associated. # # XXX This does not remove the extended from the parted.Disk, but it should # cause removeNewPartitions to remove it since there will no longer be # a PartitionDevice for it. for partition in storage.partitions: if not partition.exists and partition.isExtended and \ not storage.devicetree.findActions(device=partition, action_type="create"): storage.devicetree._removeDevice(partition, modparent=False, force=True) partitions = storage.partitions[:] for part in partitions: part.req_bootable = False if not part.exists: # start over with flexible-size requests part.req_size = part.req_base_size try: storage.bootDevice.req_bootable = True except AttributeError: # there's no stage2 device. hopefully it's temporary. pass removeNewPartitions(disks, partitions, partitions) free = getFreeRegions(disks) try: allocatePartitions(storage, disks, partitions, free) growPartitions(disks, partitions, free, size_sets=storage.size_sets) except Exception: raise else: # Mark all growable requests as no longer growable. for partition in storage.partitions: log.debug("fixing size of %s", partition) partition.req_grow = False partition.req_base_size = partition.size partition.req_size = partition.size finally: # these are only valid for one allocation run storage.size_sets = [] # The number and thus the name of partitions may have changed now, # allocatePartitions() takes care of this for new partitions, but not # for pre-existing ones, so we update the name of all partitions here for part in storage.partitions: # leave extended partitions as-is -- we'll handle them separately if part.isExtended: continue part.updateName() updateExtendedPartitions(storage, disks) for part in [p for p in storage.partitions if not p.exists]: problem = part.checkSize() if problem < 0: raise PartitioningError(_("partition is too small for %(format)s formatting " "(allowable size is %(minSize)s to %(maxSize)s)") % {"format": part.format.name, "minSize": part.format.minSize, "maxSize": part.format.maxSize}) elif problem > 0: raise PartitioningError(_("partition is too large for %(format)s formatting " "(allowable size is %(minSize)s to %(maxSize)s)") % {"format": part.format.name, "minSize": part.format.minSize, "maxSize": part.format.maxSize}) def align_size_for_disklabel(size, disklabel): # Align the base size to the disk's grain size. grain_size = Size(disklabel.alignment.grainSize) grains, rem = divmod(size, grain_size) return (grains * grain_size) + (grain_size if rem else Size(0)) def allocatePartitions(storage, disks, partitions, freespace): """ Allocate partitions based on requested features. :param storage: a Blivet instance :type storage: :class:`~.Blivet` :param disks: list of usable disks :type disks: list of :class:`~.devices.StorageDevice` :param partitions: list of partitions :type partitions: list of :class:`~.devices.PartitionDevice` :param freespace: list of free regions on disks :type freespace: list of :class:`parted.Geometry` :raises: :class:`~.errors.PartitioningError` :returns: :const:`None` Non-existing partitions are sorted according to their requested attributes, and then allocated. The basic approach to sorting is that the more specifically- defined a request is, the earlier it will be allocated. See :func:`partitionCompare` for details of the sorting criteria. The :class:`~.devices.PartitionDevice` instances will have their name and parents attributes set once they have been allocated. """ log.debug("allocatePartitions: disks=%s ; partitions=%s", [d.name for d in disks], ["%s(id %d)" % (p.name, p.id) for p in partitions]) new_partitions = [p for p in partitions if not p.exists] new_partitions.sort(cmp=partitionCompare) # set this here instead of repeatedly calling storage.bootDisk further on, # which adds a lot of noise in the logs boot_disk = storage.bootDisk # the following dicts all use device path strings as keys disklabels = {} # DiskLabel instances for each disk all_disks = {} # StorageDevice for each disk for disk in disks: if disk.path not in disklabels.keys(): disklabels[disk.path] = disk.format all_disks[disk.path] = disk removeNewPartitions(disks, new_partitions, partitions) for _part in new_partitions: if _part.partedPartition and _part.isExtended: # ignore new extendeds as they are implicit requests continue # obtain the set of candidate disks req_disks = [] if _part.req_disks: # use the requested disk set req_disks = _part.req_disks else: # no disks specified means any disk will do req_disks = disks # sort the disks, making sure the boot disk is first req_disks.sort(key=lambda d: d.name, cmp=storage.compareDisks) for disk in req_disks: if boot_disk and disk == boot_disk: boot_index = req_disks.index(disk) req_disks.insert(0, req_disks.pop(boot_index)) boot = _part.req_base_weight > 1000 log.debug("allocating partition: %s ; id: %d ; disks: %s ;\n" "boot: %s ; primary: %s ; size: %d ; grow: %s ; " "max_size: %s ; start: %s ; end: %s", _part.name, _part.id, [d.name for d in req_disks], boot, _part.req_primary, _part.req_size, _part.req_grow, _part.req_max_size, _part.req_start_sector, _part.req_end_sector) free = None use_disk = None part_type = None growth = 0 # in sectors # loop through disks for _disk in req_disks: disklabel = disklabels[_disk.path] best = None current_free = free alignment = disklabel.getAlignment(size=_part.req_size) # for growable requests, we don't want to pass the current free # geometry to getBestFreeRegion -- this allows us to try the # best region from each disk and choose one based on the total # growth it allows if _part.req_grow: current_free = None log.debug("checking freespace on %s", _disk.name) if _part.req_start_sector is None: req_size = align_size_for_disklabel(_part.req_size, disklabel) else: # don't align size if start sector was specified req_size = _part.req_size if req_size != _part.req_size: log.debug("size %s rounded up to %s for disk %s", _part.req_size, req_size, _disk.name) new_part_type = getNextPartitionType(disklabel.partedDisk) if new_part_type is None: # can't allocate any more partitions on this disk log.debug("no free partition slots on %s", _disk.name) continue if _part.req_primary and new_part_type != parted.PARTITION_NORMAL: if (disklabel.partedDisk.primaryPartitionCount < disklabel.partedDisk.maxPrimaryPartitionCount): # don't fail to create a primary if there are only three # primary partitions on the disk (#505269) new_part_type = parted.PARTITION_NORMAL else: # we need a primary slot and none are free on this disk log.debug("no primary slots available on %s", _disk.name) continue elif _part.req_partType is not None and \ new_part_type != _part.req_partType: new_part_type = _part.req_partType best = getBestFreeSpaceRegion(disklabel.partedDisk, new_part_type, req_size, start=_part.req_start_sector, best_free=current_free, boot=boot, grow=_part.req_grow, alignment=alignment) if best == free and not _part.req_primary and \ new_part_type == parted.PARTITION_NORMAL: # see if we can do better with a logical partition log.debug("not enough free space for primary -- trying logical") new_part_type = getNextPartitionType(disklabel.partedDisk, no_primary=True) if new_part_type: best = getBestFreeSpaceRegion(disklabel.partedDisk, new_part_type, req_size, start=_part.req_start_sector, best_free=current_free, boot=boot, grow=_part.req_grow, alignment=alignment) if best and free != best: update = True allocated = new_partitions[:new_partitions.index(_part)+1] if any([p.req_grow for p in allocated]): log.debug("evaluating growth potential for new layout") new_growth = 0 for disk_path in disklabels.keys(): log.debug("calculating growth for disk %s", disk_path) # Now we check, for growable requests, which of the two # free regions will allow for more growth. # set up chunks representing the disks' layouts temp_parts = [] for _p in new_partitions[:new_partitions.index(_part)]: if _p.disk.path == disk_path: temp_parts.append(_p) # add the current request to the temp disk to set up # its partedPartition attribute with a base geometry if disk_path == _disk.path: _part_type = new_part_type _free = best if new_part_type == parted.PARTITION_EXTENDED and \ new_part_type != _part.req_partType: addPartition(disklabel, best, new_part_type, None) _part_type = parted.PARTITION_LOGICAL _free = getBestFreeSpaceRegion(disklabel.partedDisk, _part_type, req_size, start=_part.req_start_sector, boot=boot, grow=_part.req_grow, alignment=alignment) if not _free: log.info("not enough space after adding " "extended partition for growth test") if new_part_type == parted.PARTITION_EXTENDED: e = disklabel.extendedPartition disklabel.partedDisk.removePartition(e) continue try: temp_part = addPartition(disklabel, _free, _part_type, req_size, _part.req_start_sector, _part.req_end_sector) except ArithmeticError as e: log.debug("failed to allocate aligned partition " "for growth test") continue _part.partedPartition = temp_part _part.disk = _disk temp_parts.append(_part) chunks = getDiskChunks(all_disks[disk_path], temp_parts, freespace) # grow all growable requests disk_growth = 0 # in sectors disk_sector_size = Size(disklabels[disk_path].partedDevice.sectorSize) for chunk in chunks: chunk.growRequests() # record the growth for this layout new_growth += chunk.growth disk_growth += chunk.growth for req in chunk.requests: log.debug("request %s (%s) growth: %d (%dMB) " "size: %d", req.device.id, req.device.name, req.growth, sectorsToSize(req.growth, disk_sector_size), sectorsToSize(req.growth + req.base, disk_sector_size)) log.debug("disk %s growth: %d (%d)", disk_path, disk_growth, sectorsToSize(disk_growth, disk_sector_size)) disklabel.partedDisk.removePartition(temp_part) _part.partedPartition = None _part.disk = None if new_part_type == parted.PARTITION_EXTENDED: e = disklabel.extendedPartition disklabel.partedDisk.removePartition(e) log.debug("total growth: %d sectors", new_growth) # update the chosen free region unless the previous # choice yielded greater total growth if free is not None and new_growth <= growth: log.debug("keeping old free: %d <= %d", new_growth, growth) update = False else: growth = new_growth if update: # now we know we are choosing a new free space, # so update the disk and part type log.debug("updating use_disk to %s, type: %s", _disk.name, new_part_type) part_type = new_part_type use_disk = _disk log.debug("new free: %d-%d / %d", best.start, best.end, best.getSize()) log.debug("new free allows for %d sectors of growth", growth) free = best if free and boot: # if this is a bootable partition we want to # use the first freespace region large enough # to satisfy the request log.debug("found free space for bootable request") break if free is None: raise PartitioningError(_("Unable to allocate requested partition scheme.")) _disk = use_disk disklabel = _disk.format if _part.req_start_sector is None: aligned_size = align_size_for_disklabel(_part.req_size, disklabel) else: # not aligned aligned_size = _part.req_size # create the extended partition if needed if part_type == parted.PARTITION_EXTENDED and \ part_type != _part.req_partType: log.debug("creating extended partition") addPartition(disklabel, free, part_type, None) # now the extended partition exists, so set type to logical part_type = parted.PARTITION_LOGICAL # recalculate freespace log.debug("recalculating free space") free = getBestFreeSpaceRegion(disklabel.partedDisk, part_type, aligned_size, start=_part.req_start_sector, boot=boot, grow=_part.req_grow, alignment=disklabel.alignment) if not free: raise PartitioningError(_("not enough free space after " "creating extended partition")) partition = addPartition(disklabel, free, part_type, aligned_size, _part.req_start_sector, _part.req_end_sector) log.debug("created partition %s of %d and added it to %s", partition.getDeviceNodeName(), partition.getSize(), disklabel.device) # this one sets the name _part.partedPartition = partition _part.disk = _disk # parted modifies the partition in the process of adding it to # the disk, so we need to grab the latest version... _part.partedPartition = disklabel.partedDisk.getPartitionByPath(_part.path) class Request(object): """ A partition request. Request instances are used for calculating how much to grow partitions. """ def __init__(self, device): """ :param device: the device being requested :type device: :class:`~.devices.StorageDevice` """ self.device = device self.growth = 0 # growth in sectors self.max_growth = 0 # max growth in sectors self.done = not getattr(device, "req_grow", True) # can we grow this # request more? self.base = 0 # base sectors @property def growable(self): """ True if this request is growable. """ return getattr(self.device, "req_grow", True) @property def id(self): """ The id of the Device instance this request corresponds to. """ return self.device.id def __repr__(self): s = ("%(type)s instance --\n" "id = %(id)s name = %(name)s growable = %(growable)s\n" "base = %(base)d growth = %(growth)d max_grow = %(max_grow)d\n" "done = %(done)s" % {"type": self.__class__.__name__, "id": self.id, "name": self.device.name, "growable": self.growable, "base": self.base, "growth": self.growth, "max_grow": self.max_growth, "done": self.done}) return s class PartitionRequest(Request): def __init__(self, partition): """ :param partition: the partition being requested :type partition: :class:`~.devices.PartitionDevice` """ super(PartitionRequest, self).__init__(partition) self.base = partition.partedPartition.geometry.length # base sectors sector_size = Size(partition.partedPartition.disk.device.sectorSize) if partition.req_grow: limits = [l for l in [sizeToSectors(partition.req_max_size, sector_size), sizeToSectors(partition.format.maxSize, sector_size), partition.partedPartition.disk.maxPartitionLength] if l > 0] if limits: max_sectors = min(limits) self.max_growth = max_sectors - self.base if self.max_growth <= 0: # max size is less than or equal to base, so we're done self.done = True class LVRequest(Request): def __init__(self, lv): """ :param lv: the logical volume being requested :type lv: :class:`~.devices.LVMLogicalVolumeDevice` """ super(LVRequest, self).__init__(lv) # Round up to nearest pe. For growable requests this will mean that # first growth is to fill the remainder of any unused extent. self.base = int(lv.vg.align(lv.req_size, roundup=True) / lv.vg.peSize) if lv.req_grow: limits = [int(l / lv.vg.peSize) for l in [lv.vg.align(lv.req_max_size), lv.vg.align(lv.format.maxSize)] if l > 0] if limits: max_units = min(limits) self.max_growth = max_units - self.base if self.max_growth <= 0: # max size is less than or equal to base, so we're done self.done = True class Chunk(object): """ A free region from which devices will be allocated """ def __init__(self, length, requests=None): """ :param length: the length of the chunk (units vary with subclass) :type length: int :keyword requests: list of requests to add :type requests: list of :class:`Request` """ if not hasattr(self, "path"): self.path = None self.length = length self.pool = length # free unit count self.base = 0 # sum of growable requests' base # sizes self.requests = [] # list of Request instances if isinstance(requests, list): for req in requests: self.addRequest(req) self.skip_list = [] def __repr__(self): s = ("%(type)s instance --\n" "device = %(device)s length = %(length)d size = %(size)d\n" "remaining = %(rem)d pool = %(pool)d" % {"type": self.__class__.__name__, "device": self.path, "length": self.length, "size": self.lengthToSize(self.length), "pool": self.pool, "rem": self.remaining}) return s def __str__(self): s = "%d on %s" % (self.length, self.path) return s def addRequest(self, req): """ Add a request to this chunk. :param req: the request to add :type req: :class:`Request` """ log.debug("adding request %d to chunk %s", req.device.id, self) self.requests.append(req) self.pool -= req.base if not req.done: self.base += req.base def reclaim(self, request, amount): """ Reclaim units from a request and return them to the pool. :param request: the request to reclaim units from :type request: :class:`Request` :param amount: number of units to reclaim from the request :type amount: int :raises: ValueError :returns: None """ log.debug("reclaim: %s %d (%d)", request, amount, self.lengthToSize(amount)) if request.growth < amount: log.error("tried to reclaim %d from request with %d of growth", amount, request.growth) raise ValueError(_("cannot reclaim more than request has grown")) request.growth -= amount self.pool += amount # put this request in the skip list so we don't try to grow it the # next time we call growRequests to allocate the newly re-acquired pool if request not in self.skip_list: self.skip_list.append(request) @property def growth(self): """ Sum of growth for all requests in this chunk. """ return sum(r.growth for r in self.requests) @property def hasGrowable(self): """ True if this chunk contains at least one growable request. """ for req in self.requests: if req.growable: return True return False @property def remaining(self): """ Number of requests still being grown in this chunk. """ return len([d for d in self.requests if not d.done]) @property def done(self): """ True if we are finished growing all requests in this chunk. """ return self.remaining == 0 or self.pool == 0 def maxGrowth(self, req): return req.max_growth def lengthToSize(self, length): return length def sizeToLength(self, size): return size def trimOverGrownRequest(self, req, base=None): """ Enforce max growth and return extra units to the pool. :param req: the request to trim :type req: :class:`Request` :keyword base: base unit count to adjust if req is done growing :type base: int :returns: the new base or None if no base was given :rtype: int or None """ max_growth = self.maxGrowth(req) if max_growth and req.growth >= max_growth: if req.growth > max_growth: # we've grown beyond the maximum. put some back. extra = req.growth - max_growth log.debug("taking back %d (%d) from %s (%s)", extra, self.lengthToSize(extra), req.device.id, req.device.name) self.pool += extra req.growth = max_growth # We're done growing this request, so it no longer # factors into the growable base used to determine # what fraction of the pool each request gets. if base is not None: base -= req.base req.done = True return base def sortRequests(self): pass def growRequests(self, uniform=False): """ Calculate growth amounts for requests in this chunk. :keyword uniform: grow requests uniformly instead of proportionally :type uniform: bool The default mode of growth is as follows: given a total number of available units, requests receive an allotment proportional to their base sizes. That means a request with base size 1000 will grow four times as fast as a request with base size 250. Under uniform growth, all requests receive an equal portion of the free units. """ log.debug("Chunk.growRequests: %r", self) self.sortRequests() for req in self.requests: log.debug("req: %r", req) # we use this to hold the base for the next loop through the # chunk's requests since we want the base to be the same for # all requests in any given growth iteration new_base = self.base last_pool = 0 # used to track changes to the pool across iterations while not self.done and self.pool and last_pool != self.pool: last_pool = self.pool # to keep from getting stuck self.base = new_base if uniform: growth = int(last_pool / self.remaining) log.debug("%d requests and %d (%d) left in chunk", self.remaining, self.pool, self.lengthToSize(self.pool)) for p in self.requests: if p.done or p in self.skip_list: continue if not uniform: # Each request is allocated free units from the pool # based on the relative _base_ sizes of the remaining # growable requests. share = Decimal(p.base) / Decimal(self.base) growth = int(share * last_pool) # truncate, don't round p.growth += growth self.pool -= growth log.debug("adding %d (%d) to %s (%s)", growth, self.lengthToSize(growth), p.device.id, p.device.name) new_base = self.trimOverGrownRequest(p, base=new_base) log.debug("new grow amount for request %s (%s) is %s " "units, or %d", p.device.id, p.device.name, p.growth, self.lengthToSize(p.growth)) if self.pool: # allocate any leftovers in pool to the first partition # that can still grow for p in self.requests: if p.done or p in self.skip_list: continue growth = self.pool p.growth += growth self.pool = 0 log.debug("adding %d (%d) to %s (%s)", growth, self.lengthToSize(growth), p.device.id, p.device.name) self.trimOverGrownRequest(p) log.debug("new grow amount for request %s (%s) is %d " "units, or %d", p.device.id, p.device.name, p.growth, self.lengthToSize(p.growth)) if self.pool == 0: break # requests that were skipped over this time through are back on the # table next time self.skip_list = [] class DiskChunk(Chunk): """ A free region on disk from which partitions will be allocated """ def __init__(self, geometry, requests=None): """ :param geometry: the free region this chunk represents :type geometry: :class:`parted.Geometry` :keyword requests: list of requests to add initially :type requests: list of :class:`PartitionRequest` .. note:: We will limit partition growth based on disklabel limitations for partition end sector, so a 10TB disk with an msdos disklabel will be treated like a 2TiB disk. .. note:: If you plan to allocate aligned partitions you should pass in an aligned geometry instance. """ self.geometry = geometry # parted.Geometry self.sectorSize = Size(self.geometry.device.sectorSize) self.path = self.geometry.device.path super(DiskChunk, self).__init__(self.geometry.length, requests=requests) def __repr__(self): s = super(DiskChunk, self).__str__() s += (" start = %(start)d end = %(end)d\n" "sectorSize = %(sectorSize)s\n" % {"start": self.geometry.start, "end": self.geometry.end, "sectorSize": self.sectorSize}) return s def __str__(self): s = "%d (%d-%d) on %s" % (self.length, self.geometry.start, self.geometry.end, self.path) return s def addRequest(self, req): """ Add a request to this chunk. :param req: the request to add :type req: :class:`PartitionRequest` """ if not isinstance(req, PartitionRequest): raise ValueError(_("DiskChunk requests must be of type " "PartitionRequest")) if not self.requests: # when adding the first request to the chunk, adjust the pool # size to reflect any disklabel-specific limits on end sector max_sector = req.device.partedPartition.disk.maxPartitionStartSector chunk_end = min(max_sector, self.geometry.end) if chunk_end <= self.geometry.start: # this should clearly never be possible, but if the chunk's # start sector is beyond the maximum allowed end sector, we # cannot continue log.error("chunk start sector is beyond disklabel maximum") raise PartitioningError(_("partitions allocated outside " "disklabel limits")) new_pool = chunk_end - self.geometry.start + 1 if new_pool != self.pool: log.debug("adjusting pool to %d based on disklabel limits", new_pool) self.pool = new_pool super(DiskChunk, self).addRequest(req) def maxGrowth(self, req): """ Return the maximum possible growth for a request. :param req: the request :type req: :class:`PartitionRequest` """ req_end = req.device.partedPartition.geometry.end req_start = req.device.partedPartition.geometry.start # Establish the current total number of sectors of growth for requests # that lie before this one within this chunk. We add the total count # to this request's end sector to obtain the end sector for this # request, including growth of earlier requests but not including # growth of this request. Maximum growth values are obtained using # this end sector and various values for maximum end sector. growth = 0 for request in self.requests: if request.device.partedPartition.geometry.start < req_start: growth += request.growth req_end += growth # obtain the set of possible maximum sectors-of-growth values for this # request and use the smallest limits = [] # disklabel-specific maximum sector max_sector = req.device.partedPartition.disk.maxPartitionStartSector limits.append(max_sector - req_end) # 2TB limit on bootable partitions, regardless of disklabel if req.device.req_bootable: max_boot = sizeToSectors(Size("2 TiB"), self.sectorSize) limits.append(max_boot - req_end) # request-specific maximum (see Request.__init__, above, for details) if req.max_growth: limits.append(req.max_growth) max_growth = min(limits) return max_growth def lengthToSize(self, length): return sectorsToSize(length, self.sectorSize) def sizeToLength(self, size): return sizeToSectors(size, self.sectorSize) def sortRequests(self): # sort the partitions by start sector self.requests.sort(key=lambda r: r.device.partedPartition.geometry.start) class VGChunk(Chunk): """ A free region in an LVM VG from which LVs will be allocated """ def __init__(self, vg, requests=None): """ :param vg: the volume group whose free space this chunk represents :type vg: :class:`~.devices.LVMVolumeGroupDevice` :keyword requests: list of requests to add initially :type requests: list of :class:`LVRequest` """ self.vg = vg self.path = vg.path usable_extents = vg.extents - int(vg.align(vg.reservedSpace, roundup=True) / vg.peSize) super(VGChunk, self).__init__(usable_extents, requests=requests) def addRequest(self, req): """ Add a request to this chunk. :param req: the request to add :type req: :class:`LVRequest` """ if not isinstance(req, LVRequest): raise ValueError(_("VGChunk requests must be of type " "LVRequest")) if req.device.metaDataSize: self.pool -= 2 * int(self.vg.align(req.device.metaDataSize, roundup=True) / self.vg.peSize) if req.device.cached: # cached LV -> reserve space for the cache self.pool -= int(self.vg.align(req.device.cache.size, roundup=True) / self.vg.peSize) super(VGChunk, self).addRequest(req) def lengthToSize(self, length): return self.vg.peSize * length def sizeToLength(self, size): return int(size / self.vg.peSize) def sortRequests(self): # sort the partitions by start sector self.requests.sort(key=lambda r: r.device, cmp=lvCompare) class ThinPoolChunk(VGChunk): """ A free region in an LVM thin pool from which LVs will be allocated """ def __init__(self, pool, requests=None): """ :param pool: the thin pool whose free space this chunk represents :type pool: :class:`~.devices.LVMThinPoolDevice` :keyword requests: list of requests to add initially :type requests: list of :class:`LVRequest` """ self.vg = pool.vg # only used for align, &c self.path = pool.path usable_extents = (pool.size / pool.vg.peSize) super(VGChunk, self).__init__(usable_extents, requests=requests) # pylint: disable=bad-super-call def getDiskChunks(disk, partitions, free): """ Return a list of Chunk instances representing a disk. :param disk: the disk :type disk: :class:`~.devices.StorageDevice` :param partitions: list of partitions :type partitions: list of :class:`~.devices.PartitionDevice` :param free: list of free regions :type free: list of :class:`parted.Geometry` :returns: list of chunks representing the disk :rtype: list of :class:`DiskChunk` Partitions and free regions not on the specified disk are ignored. Chunks contain an aligned version of the free region's geometry. """ # list of all new partitions on this disk disk_parts = [p for p in partitions if p.disk == disk and not p.exists] disk_free = [f for f in free if f.device.path == disk.path] chunks = [] for f in disk_free[:]: # Align the geometry so we have a realistic view of the free space. # alignUp and alignDown can align in the reverse direction if the only # aligned sector within the geometry is in that direction, so we have to # also check that the resulting aligned geometry has a non-zero length. # (It is possible that both will align to the same sector in a small # enough region.) try: size = sectorsToSize(f.length, disk.format.sectorSize) alignment = disk.format.getAlignment(size=size) end_alignment = disk.format.getEndAlignment(alignment=alignment) except AlignmentError: disk_free.remove(f) continue al_start = alignment.alignUp(f, f.start) al_end = end_alignment.alignDown(f, f.end) if al_start >= al_end: disk_free.remove(f) continue geom = parted.Geometry(device=f.device, start=al_start, end=al_end) if geom.length < alignment.grainSize: disk_free.remove(f) continue chunks.append(DiskChunk(geom)) for p in disk_parts: if p.isExtended: # handle extended partitions specially since they are # indeed very special continue for i, f in enumerate(disk_free): if f.contains(p.partedPartition.geometry): chunks[i].addRequest(PartitionRequest(p)) break return chunks class TotalSizeSet(object): """ Set of device requests with a target combined size. This will be handled by growing the requests until the desired combined size has been achieved. """ def __init__(self, devices, size): """ :param devices: the set of devices :type devices: list of :class:`~.devices.PartitionDevice` :param size: the target combined size :type size: :class:`~.size.Size` """ self.devices = [] for device in devices: if isinstance(device, LUKSDevice): partition = device.slave else: partition = device self.devices.append(partition) self.size = size self.requests = [] self.allocated = sum([d.req_base_size for d in self.devices]) log.debug("set.allocated = %d", self.allocated) def allocate(self, amount): log.debug("allocating %d to TotalSizeSet with %d/%d (%d needed)", amount, self.allocated, self.size, self.needed) self.allocated += amount @property def needed(self): return self.size - self.allocated def deallocate(self, amount): log.debug("deallocating %d from TotalSizeSet with %d/%d (%d needed)", amount, self.allocated, self.size, self.needed) self.allocated -= amount class SameSizeSet(object): """ Set of device requests with a common target size. """ def __init__(self, devices, size, grow=False, max_size=None): """ :param devices: the set of devices :type devices: list of :class:`~.devices.PartitionDevice` :param size: target size for each device/request :type size: :class:`~.size.Size` :keyword grow: whether the devices can be grown :type grow: bool :keyword max_size: the maximum size for growable devices :type max_size: :class:`~.size.Size` """ self.devices = [] for device in devices: if isinstance(device, LUKSDevice): partition = device.slave else: partition = device self.devices.append(partition) self.size = int(size / len(devices)) self.grow = grow self.max_size = max_size self.requests = [] def manageSizeSets(size_sets, chunks): growth_by_request = {} requests_by_device = {} chunks_by_request = {} for chunk in chunks: for request in chunk.requests: requests_by_device[request.device] = request chunks_by_request[request] = chunk growth_by_request[request] = 0 for i in range(2): reclaimed = dict([(chunk, 0) for chunk in chunks]) for ss in size_sets: if isinstance(ss, TotalSizeSet): # TotalSizeSet members are trimmed to achieve the requested # total size log.debug("set: %s %d/%d", [d.name for d in ss.devices], ss.allocated, ss.size) for device in ss.devices: request = requests_by_device[device] chunk = chunks_by_request[request] new_growth = request.growth - growth_by_request[request] ss.allocate(chunk.lengthToSize(new_growth)) # decide how much to take back from each request # We may assume that all requests have the same base size. # We're shooting for a roughly equal distribution by trimming # growth from the requests that have grown the most first. requests = sorted([requests_by_device[d] for d in ss.devices], key=lambda r: r.growth, reverse=True) needed = ss.needed for request in requests: chunk = chunks_by_request[request] log.debug("%s", request) log.debug("needed: %d", ss.needed) if ss.needed < 0: # it would be good to take back some from each device # instead of taking all from the last one(s) extra = -chunk.sizeToLength(needed) / len(ss.devices) if extra > request.growth and i == 0: log.debug("not reclaiming from this request") continue else: extra = min(extra, request.growth) reclaimed[chunk] += extra chunk.reclaim(request, extra) ss.deallocate(chunk.lengthToSize(extra)) if ss.needed <= 0: request.done = True elif isinstance(ss, SameSizeSet): # SameSizeSet members all have the same size as the smallest # member requests = [requests_by_device[d] for d in ss.devices] _min_growth = min([r.growth for r in requests]) log.debug("set: %s %d", [d.name for d in ss.devices], ss.size) log.debug("min growth is %d", _min_growth) for request in requests: chunk = chunks_by_request[request] _max_growth = chunk.sizeToLength(ss.size) - request.base log.debug("max growth for %s is %d", request, _max_growth) min_growth = max(min(_min_growth, _max_growth), 0) if request.growth > min_growth: extra = request.growth - min_growth reclaimed[chunk] += extra chunk.reclaim(request, extra) request.done = True elif request.growth == min_growth: request.done = True # store previous growth amounts so we know how much was allocated in # the latest growRequests call for request in growth_by_request.keys(): growth_by_request[request] = request.growth for chunk in chunks: if reclaimed[chunk] and not chunk.done: chunk.growRequests() def growPartitions(disks, partitions, free, size_sets=None): """ Grow all growable partition requests. Partitions have already been allocated from chunks of free space on the disks. This function does not modify the ordering of partitions or the free chunks from which they are allocated. Free space within a given chunk is allocated to each growable partition allocated from that chunk in an amount corresponding to the ratio of that partition's base size to the sum of the base sizes of all growable partitions allocated from the chunk. :param disks: all usable disks :type disks: list of :class:`~.devices.StorageDevice` :param partitions: all partitions :type partitions: list of :class:`~.devices.PartitionDevice` :param free: all free regions on disks :type free: list of :class:`parted.Geometry` :keyword size_sets: list of size-related partition sets :type size_sets: list of :class:`TotalSizeSet` or :class:`SameSizeSet` :returns: :const:`None` """ log.debug("growPartitions: disks=%s, partitions=%s", [d.name for d in disks], ["%s(id %d)" % (p.name, p.id) for p in partitions]) all_growable = [p for p in partitions if p.req_grow] if not all_growable: log.debug("no growable partitions") return if size_sets is None: size_sets = [] log.debug("growable partitions are %s", [p.name for p in all_growable]) # # collect info about each disk and the requests it contains # chunks = [] for disk in disks: # list of free space regions on this disk prior to partition allocation disk_free = [f for f in free if f.device.path == disk.path] if not disk_free: log.debug("no free space on %s", disk.name) continue disk_chunks = getDiskChunks(disk, partitions, disk_free) log.debug("disk %s has %d chunks", disk.name, len(disk_chunks)) chunks.extend(disk_chunks) # # grow the partitions in each chunk as a group # for chunk in chunks: if not chunk.hasGrowable: # no growable partitions in this chunk continue chunk.growRequests() # adjust set members' growth amounts as needed manageSizeSets(size_sets, chunks) for disk in disks: log.debug("growing partitions on %s", disk.name) for chunk in chunks: if chunk.path != disk.path: continue if not chunk.hasGrowable: # no growable partitions in this chunk continue # recalculate partition geometries disklabel = disk.format start = chunk.geometry.start default_alignment = disklabel.getAlignment() # find any extended partition on this disk extended_geometry = getattr(disklabel.extendedPartition, "geometry", None) # parted.Geometry # align start sector as needed if not default_alignment.isAligned(chunk.geometry, start): start = default_alignment.alignUp(chunk.geometry, start) new_partitions = [] for p in chunk.requests: ptype = p.device.partedPartition.type log.debug("partition %s (%d): %s", p.device.name, p.device.id, ptype) if ptype == parted.PARTITION_EXTENDED: continue new_length = p.base + p.growth alignment = disklabel.getAlignment(size=chunk.lengthToSize(new_length)) end_alignment = disklabel.getEndAlignment(alignment=alignment) # XXX since we need one metadata sector before each # logical partition we burn one logical block to # safely align the start of each logical partition if ptype == parted.PARTITION_LOGICAL: start += alignment.grainSize end = start + new_length - 1 # align end sector as needed if not end_alignment.isAligned(chunk.geometry, end): end = end_alignment.alignDown(chunk.geometry, end) new_geometry = parted.Geometry(device=disklabel.partedDevice, start=start, end=end) log.debug("new geometry for %s: %s", p.device.name, new_geometry) start = end + 1 new_partition = parted.Partition(disk=disklabel.partedDisk, type=ptype, geometry=new_geometry) new_partitions.append((new_partition, p.device)) # remove all new partitions from this chunk removeNewPartitions([disk], [r.device for r in chunk.requests], partitions) log.debug("back from removeNewPartitions") # adjust the extended partition as needed # we will ony resize an extended partition that we created log.debug("extended: %s", extended_geometry) if extended_geometry and \ chunk.geometry.contains(extended_geometry): log.debug("setting up new geometry for extended on %s", disk.name) ext_start = 0 for (partition, device) in new_partitions: if partition.type != parted.PARTITION_LOGICAL: continue if not ext_start or partition.geometry.start < ext_start: # account for the logical block difference in start # sector for the extended -v- first logical # (partition.geometry.start is already aligned) ext_start = partition.geometry.start - default_alignment.grainSize new_geometry = parted.Geometry(device=disklabel.partedDevice, start=ext_start, end=chunk.geometry.end) log.debug("new geometry for extended: %s", new_geometry) new_extended = parted.Partition(disk=disklabel.partedDisk, type=parted.PARTITION_EXTENDED, geometry=new_geometry) ptypes = [p.type for (p, d) in new_partitions] for pt_idx, ptype in enumerate(ptypes): if ptype == parted.PARTITION_LOGICAL: new_partitions.insert(pt_idx, (new_extended, None)) break # add the partitions with their new geometries to the disk for (partition, device) in new_partitions: if device: name = device.name else: # If there was no extended partition on this disk when # doPartitioning was called we won't have a # PartitionDevice instance for it. name = partition.getDeviceNodeName() log.debug("setting %s new geometry: %s", name, partition.geometry) constraint = parted.Constraint(exactGeom=partition.geometry) disklabel.partedDisk.addPartition(partition=partition, constraint=constraint) path = partition.path if device: # set the device's name device.partedPartition = partition # without this, the path attr will be a basename. eek. device.disk = disk # make sure we store the disk's version of the partition newpart = disklabel.partedDisk.getPartitionByPath(path) device.partedPartition = newpart def lvCompare(lv1, lv2): """ More specifically defined lvs come first. < 1 => x < y 0 => x == y > 1 => x > y """ ret = 0 # larger requests go to the front of the list ret -= cmp(lv1.size, lv2.size) * 100 # fixed size requests to the front ret += cmp(lv1.req_grow, lv2.req_grow) * 50 # potentially larger growable requests go to the front if lv1.req_grow and lv2.req_grow: if not lv1.req_max_size and lv2.req_max_size: ret -= 25 elif lv1.req_max_size and not lv2.req_max_size: ret += 25 else: ret -= cmp(lv1.req_max_size, lv2.req_max_size) * 25 if ret > 0: ret = 1 elif ret < 0: ret = -1 return ret def _apply_chunk_growth(chunk): """ grow the lvs by the amounts the VGChunk calculated """ for req in chunk.requests: if not req.device.req_grow: continue size = chunk.lengthToSize(req.base + req.growth) # Base is pe, which means potentially rounded up by as much as # pesize-1. As a result, you can't just add the growth to the # initial size. req.device.size = size def growLVM(storage): """ Grow LVs according to the sizes of the PVs. Strategy for growth involving thin pools: - Applies to device factory class as well. - Overcommit is not allowed. - Pool lv's base size includes sizes of thin lvs within it. - Pool is grown along with other non-thin lvs. - Thin lvs within each pool are grown separately using the ThinPoolChunk class. """ for vg in storage.vgs: total_free = vg.freeSpace if total_free < 0: # by now we have allocated the PVs so if there isn't enough # space in the VG we have a real problem raise PartitioningError(_("not enough space for LVM requests")) elif not total_free: log.debug("vg %s has no free space", vg.name) continue log.debug("vg %s: %d free ; lvs: %s", vg.name, total_free, [l.lvname for l in vg.lvs]) # don't include thin lvs in the vg's growth calculation fatlvs = [lv for lv in vg.lvs if lv not in vg.thinlvs] requests = [] for lv in fatlvs: if lv in vg.thinpools: # make sure the pool's base size is at least the sum of its lvs' lv.req_size = max(lv.minSize, lv.req_size, lv.usedSpace) lv.size = lv.req_size # establish sizes for the percentage-based requests (which are fixed) percentage_based_lvs = [lv for lv in vg.lvs if lv.req_percent] if sum(lv.req_percent for lv in percentage_based_lvs) > 100: raise ValueError("sum of percentages within a vg cannot exceed 100") percent_base = sum(vg.align(lv.req_size, roundup=False) / vg.peSize for lv in percentage_based_lvs) percentage_basis = vg.freeExtents + percent_base for lv in percentage_based_lvs: new_extents = int(lv.req_percent * Decimal('0.01') * percentage_basis) # set req_size also so the request can also be growable if desired lv.size = lv.req_size = vg.peSize * new_extents if lv in vg.thinpools: # thin pools need to have their MD size set now that they know # their sizes lv.autoset_md_size() # grow regular lvs chunk = VGChunk(vg, requests=[LVRequest(l) for l in fatlvs]) chunk.growRequests() _apply_chunk_growth(chunk) # now that we have grown all thin pools (if any), let's calculate and # set their metadata size if not told otherwise for pool in vg.thinpools: if not pool.exists and pool.metaDataSize == Size(0): pool.autoset_md_size() # now, grow thin lv requests within their respective pools for pool in vg.thinpools: requests = [LVRequest(l) for l in pool.lvs] thin_chunk = ThinPoolChunk(pool, requests) thin_chunk.growRequests() _apply_chunk_growth(thin_chunk)
Upload File
Create Folder